Step 1: Tune receiver to a proper centre frequency (here: ELAD FDM-S2 with 6,1 MHz bandwidth at 11,9 MHz).
Step 2: Zoom spectrum & sonagram to show the 25 m broadcast band in full. [You may also use a bandwidth lower than 6,1 MHz in this case.]
Step 3: Define the 24 demodulators (RX1 … RX24) with e.g. different frequency, mode, bandwidth, demodulator output (e.g. VAC1 … VAC24) etc., each.

Note: In this screenshot, all outputs had been muted. You must un-tick the muting symbol before the next steps. Otherwise you will have no audio on these channels!
This is the MATRIX view of the 24 channels. Each channel has its own window comprising spectrum and sonagram each. You may apply a general zoom on all windows which had been done here at step 1 to show a detailed view. Here you also see the need for different modes to avoid sideband interference etc.
Here you see the main GUI of the software (left) and the 24er MATRIX on the right. Zoom had been switched here to step 3 (of 5) to give a wider view of both spectrum and sonagram.
Step 4: You should save your work under FAVOURITES. Use a telling name. „TEST123“ doesn’t tell you anything after 14 days or so ...
Step 5: To record the audio output of these 24 channels, I used the Multi Channel Recorder MCRS of Abyssmedia. In the first row you find the channel's name (frequency & VAC#), in the second the Line#.
Control Panel of MCRS with all 24 channels, ready to start.
Step 5: After stopping the recording, locate the audio files which are automatically labeled.
Step 6: Import them into your favourite audio player (here: Audacity), and activate the channel you want for play. In a similar way you may feed the input of up to 24 (instances of) data decoders like FLDIGI, PC-HFDL or MultiPSK with up to 24 channels – more ideas to come.